172 research outputs found

    The effect of the Basset history force on particle clustering in Homogeneous and Isotropic Turbulence

    Get PDF
    We study the effect of the Basset history force on the dynamics of small particles transported in homogeneous and isotropic turbulence and show that this term, often neglected in previous numerical studies, reduces the small-scale clustering typical of inertial particles. The contribution of this force to the total particle acceleration is, on average, responsible for about 10% of the total acceleration and particularly relevant during rare strong events. At moderate density ratios, i.e. sand or metal powder in water, its presence alters the balance of forces determining the particle acceleration

    The formation of the ocean’s anthropogenic carbon reservoir

    Get PDF
    The shallow overturning circulation of the oceans transports heat from the tropics to the mid-latitudes. This overturning also influences the uptake and storage of anthropogenic carbon (Cant). We demonstrate this by quantifying the relative importance of ocean thermodynamics, circulation and biogeochemistry in a global biochemistry and circulation model. Almost 2/3 of the Cant ocean uptake enters via gas exchange in waters that are lighter than the base of the ventilated thermocline. However, almost 2/3 of the excess Cant is stored below the thermocline. Our analysis shows that subtropical waters are a dominant component in the formation of subpolar waters and that these water masses essentially form a common Cant reservoir. This new method developed and presented here is intrinsically Lagrangian, as it by construction only considers the velocity or transport of waters across isopycnals. More generally, our approach provides an integral framework for linking ocean thermodynamics with biogeochemistry

    Mechanistic Drivers of Reemergence of Anthropogenic Carbon in the Equatorial Pacific

    Get PDF
    AbstractRelatively rapid reemergence of anthropogenic carbon (Cant) in the Equatorial Pacific is of potential importance for its impact on the carbonate buffering capacity of surface seawater and thereby impeding the ocean's ability to further absorb Cant from the atmosphere. We explore the mechanisms sustaining Cant reemergence (upwelling) from the thermocline to surface layers by applying water mass transformation diagnostics to a global ocean/sea ice/biogeochemistry model. We find that the upwelling rate of Cant (0.4 PgC yr−1) from the thermocline to the surface layer is almost twice as large as air‐sea Cant fluxes (0.203 PgC yr−1). The upwelling of Cant from the thermocline to the surface layer can be understood as a two‐step process: The first being due to diapycnal diffusive transformation fluxes and the second due to surface buoyancy fluxes. We also find that this reemergence of Cant decreases dramatically during the 1982/1983 and 1997/1998 El Niño events

    Water masses as a unifying framework for understanding the Southern Ocean Carbon Cycle

    Get PDF
    International audienceThe scientific motivation for this study is to understand the processes in the ocean interior controlling carbon transfer across 30° S. To address this, we have developed a unified framework for understanding the interplay between physical drivers such as buoyancy fluxes and ocean mixing, and carbon-specific processes such as biology, gas exchange and carbon mixing. Given the importance of density in determining the ocean interior structure and circulation, the framework is one that is organized by density and water masses, and it makes combined use of Eulerian and Lagrangian diagnostics. This is achieved through application to a global ice-ocean circulation model and an ocean biogeochemistry model, with both components being part of the widely-used IPSL coupled ocean/atmosphere/carbon cycle model. Our main new result is the dominance of the overturning circulation (identified by water masses) in setting the vertical distribution of carbon transport from the Southern Ocean towards the global ocean. A net contrast emerges between the role of Subantarctic Mode Water (SAMW), associated with large northward transport and ingassing, and Antarctic Intermediate Water (AAIW), associated with a much smaller export and outgassing. The differences in their export rate reflects differences in their water mass formation processes. For SAMW, two-thirds of the surface waters are provided as a result of the densification of thermocline water (TW), and upon densification this water carries with it a substantial diapycnal flux of dissolved inorganic carbon (DIC). For AAIW, principal formatin processes include buoyancy forcing and mixing, with these serving to lighten CDW. An additional important formation pathway of AAIW is through the effect of interior processing (mixing, including cabelling) that serve to densify SAMW. A quantitative evaluation of the contribution of mixing, biology and gas exchange to the DIC evolution per water mass reveals that mixing and, secondarily, gas exchange, effectively nearly balance biology on annual scales (while the latter process can be dominant at seasonal scale). The distribution of DIC in the northward flowing water at 30° S is thus primarily set by the DIC values of the water masses that are involved in the formation processes

    TURBOGEN: Computer-controlled vertically oscillating grid system for small-scale turbulence studies on plankton

    Get PDF
    11 pages, 10 figures, 3 tablesIn recent years, there has been a renewed interest in the impact of turbulence on aquatic organisms. In response to this interest, a novel instrument has been constructed, TURBOGEN, that generates turbulence in water volumes up to 13 l. TURBOGEN is fully computer controlled, thus, allowing for a high level of reproducibility and for variations of the intensity and characteristics of turbulence during the experiment. The calibration tests, carried out by particle image velocimetry, showed TURBOGEN to be successful in generating isotropic turbulence at the typical relatively low levels of the marine environment. TURBOGEN and its sizing have been devised with the long-term scope of analyzing in detail the molecular responses of plankton to different mixing regimes, which is of great importance in both environmental and biotechnological processesRachel Macmasters is acknowledged for language check. A.A., M.I.F., D.I., M.R.d’A., and R.W. thank the Flagship project RITMARE—The Italian Research for the Sea Programme (Ricerca ITaliana per il MARE) for partial support. A.A. was funded by the European Union under FP7-People—GA No. 600407Peer Reviewe

    Marine diatoms change their gene expression profile when exposed to microscale turbulence under nutrient replete conditions

    Get PDF
    Diatoms are a fundamental microalgal phylum that thrives in turbulent environments. Despite several experimental and numerical studies, if and how diatoms may profit from turbulence is still an open question. One of the leading arguments is that turbulence favours nutrient uptake. Morphological features, such as the absence of flagella, the presence of a rigid exoskeleton and the micrometre size would support the possible passive but beneficial role of turbulence on diatoms. We demonstrate that in fact diatoms actively respond to turbulence in non-limiting nutrient conditions. TURBOGEN, a prototypic instrument to generate natural levels of microscale turbulence, was used to expose diatoms to the mechanical stimulus. Differential expression analyses, coupled with microscopy inspections, enabled us to study the morphological and transcriptional response of Chaetoceros decipiens to turbulence. Our target species responds to turbulence by activating energy storage pathways like fatty acid biosynthesis and by modifying its cell chain spectrum. Two other ecologically important species were examined and the occurrence of a morphological response was confirmed. These results challenge the view of phytoplankton as unsophisticated passive organisms

    Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria

    Get PDF
    Prochlorococcus and Synechococcus are the two most abundant and widespread phytoplankton in the global ocean. To better understand the factors controlling their biogeography, a reference database of the high-resolution taxonomic marker petB, encoding cytochrome b6, was used to recruit reads out of 109 metagenomes from the Tara Oceans expedition. An unsuspected novel genetic diversity was unveiled within both genera, even for the most abundant and well-characterized clades, and 136 divergent petB sequences were successfully assembled from metagenomic reads, significantly enriching the reference database. We then defined Ecologically Significant Taxonomic Units (ESTUs)—that is, organisms belonging to the same clade and occupying a common oceanic niche. Three major ESTU assemblages were identified along the cruise transect for Prochlorococcus and eight for Synechococcus. Although Prochlorococcus HLIIIA and HLIVA ESTUs codominated in irondepleted areas of the Pacific Ocean, CRD1 and the yet-to-be cultured EnvB were the prevalent Synechococcus clades in this area, with three different CRD1 and EnvB ESTUs occupying distinct ecological niches with regard to iron availability and temperature. Sharp community shifts were also observed over short geographic distances—for example, around the Marquesas Islands or between southern Indian and Atlantic Oceans—pointing to a tight correlation between ESTU assemblages and specific physico-chemical parameters. Together, this study demonstrates that there is a previously overlooked, ecologically meaningful, fine-scale diversity within some currently defined picocyanobacterial ecotypes, bringing novel insights into the ecology, diversity, and biology of the two most abundant phototrophs on Earth

    A Conceptual Framework for Developing the Next Generation of Marine OBservatories (MOBs) for Science and Society

    Get PDF
    In the field of ocean observing, the term of “observatory” is often used without a unique meaning. A clear and unified definition of observatory is needed in order to facilitate the communication in a multidisciplinary community, to capitalize on future technological innovations and to support the observatory design based on societal needs. In this paper, we present a general framework to define the next generation Marine OBservatory (MOB), its capabilities and functionalities in an operational context. The MOB consists of four interconnected components or “gears” (observation infrastructure, cyberinfrastructure, support capacity, and knowledge generation engine) that are constantly and adaptively interacting with each other. Therefore, a MOB is a complex infrastructure focused on a specific geographic area with the primary scope to generate knowledge via data synthesis and thereby addressing scientific, societal, or economic challenges. Long-term sustainability is a key MOB feature that should be guaranteed through an appropriate governance. MOBs should be open to innovations and good practices to reduce operational costs and to allow their development in quality and quantity. A deeper biological understanding of the marine ecosystem should be reached with the proliferation of MOBs, thus contributing to effective conservation of ecosystems and management of human activities in the oceans. We provide an actionable model for the upgrade and development of sustained marine observatories producing knowledge to support science-based economic and societal decisions

    Meta-omics reveals genetic flexibility of diatom nitrogen transporters in response to environmental changes

    Get PDF
    Diatoms (Bacillariophyta), one of the most abundant and diverse groups of marine phytoplankton, respond rapidly to the supply of new nutrients, often out-competing other phytoplankton. Herein, we integrated analyses of the evolution, distribution and expression modulation of two gene families involved in diatom nitrogen uptake (DiAMT1 and DiNRT2), in order to infer the main drivers of divergence in a key functional trait of phytoplankton. Our results suggest that major steps in the evolution of the two gene families reflected key events triggering diatom radiation and diversification. Their expression is modulated in the contemporary ocean by seawater temperature, nitrate and iron concentrations. Moreover, the differences in diversity and expression of these gene families throughout the water column hint at a possible link with bacterial activity. This study represents a proof-of-concept of how a holistic approach may shed light on the functional biology of organisms in their natural environment

    Computing marine plankton connectivity under thermal constraints

    Get PDF
    Ocean currents are a key driver of plankton dispersal across the oceanic basins. However, species specific temperature constraints may limit the plankton dispersal. We propose a methodology to estimate the connectivity pathways and timescales for plankton species with given constraints on temperature tolerances, by combining Lagrangian modeling with network theory. We demonstrate application of two types of temperature constraints: thermal niche and adaptation potential and compare it to the surface water connectivity between sample stations in the Atlantic Ocean. We find that non-constrained passive particles representative of a plankton species can connect all the stations within three years at the surface with pathways mostly along the major ocean currents. However, under thermal constraints, only a subset of stations can establish connectivity. Connectivity time increases marginally under these constraints, suggesting that plankton can keep within their favorable thermal conditions by advecting via slightly longer paths. Effect of advection depth on connectivity is observed to be sensitive to the width of the thermal constraints, along with decreasing flow speeds with depth and possible changes in pathways
    • 

    corecore